<u>Dashboard</u> / My courses / <u>INTRODUCTION TO LINEAR ALGEBRA-Lecture-1201-Meta</u> / <u>General</u> / <u>Second Exam</u>

Started on Sunday, 10 January 2021, 9:47 AM

State Finished

Completed on Sunday, 10 January 2021, 10:33 AM

Time taken 45 mins 22 secs

Grade 30.00 out of 32.00 (94%)

Question 1

Correct

Mark 1.00 out of 1.00

The vectors $\{x^2+2x+1,x-1,x^2+x+1\}$ form a basis for P_3 .

Select one:

a. False

b. True

The correct answer is: True

Question 2

Correct

Mark 1.00 out of 1.00

Let $E=[2+x,1-x,x^2+1]$ be an ordered basis for P_3 . If $p(x)=2x^2-2x+1$, then the coordinate vector of p(x) with respect to E is

Select one:

$$lacksquare$$
 a. $\begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$

~

$$\bigcirc$$
 b. $\begin{pmatrix} 3 \\ 2 \\ -3 \end{pmatrix}$

$$\bigcirc$$
 c. $\begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$

$$\bigcirc$$
 d. $\begin{pmatrix} -2 \\ -3 \\ 2 \end{pmatrix}$

The correct answer is: $\begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$

Question 3

Correct

Mark 1.00 out of 1.00

If A is a nonzero 4 imes 2-matrix and Ax = 0 has infinitely many solutions, then $\mathrm{rank}(A) =$

Select one:

$$\circ$$
 a. 4

 \odot d. 2

The correct answer is: 1

Correct

Mark 1.00 out of 1.00

If
$$A=egin{pmatrix}1&-2&1&0\\-1&2&3&0\\2&-1&0&0\end{pmatrix}$$
 , then $\mathrm{rank}(A)=3.$

Select one:

- a. True
- b. False

The correct answer is: True

Question **5**

Correct

Mark 1.00 out of 1.00

Every spanning set for \mathbb{R}^3 contains at least 3 vectors.

Select one:

- a. False
- b. True

The correct answer is: True

Question 6

Correct

Mark 1.00 out of 1.00

The transition matrix from the standard basis $S=\left[e_1=\begin{pmatrix}1\\0\end{pmatrix},e_2=\begin{pmatrix}0\\1\end{pmatrix}\right]$ to the ordered basis

$$U=\left[u_1=\left(rac{1}{3}
ight),u_2=\left(rac{2}{7}
ight)
ight]$$
 is

Select one:

- \bigcirc a. $T=egin{pmatrix}1&2\3&7\end{pmatrix}$
- \bigcirc b. $T=\left(egin{array}{cc} 1 & -2 \ -3 & 7 \end{array}
 ight)$
- \bigcirc c. $T=egin{pmatrix} -7 & 2 \ 3 & -1 \end{pmatrix}$
- extstyle ext

The correct answer is: $T=\left(egin{array}{cc} 7 & -2 \ -3 & 1 \end{array}
ight)$

Question **7**

Correct

Mark 1.00 out of 1.00

If A is a 3 imes 4-matrix, rows of A are linearly independent, then

Select one:

- \bigcirc a. rank(A) = 3- nullity(A)
- lacksquare b. $\operatorname{nullity}(A)=1$

~

- ${\mathbb C}$ c. $\operatorname{nullity}(A)=3$
- \bigcirc d. rank $(A) = \mathsf{nullity}(A)$

The correct answer is: $\operatorname{nullity}(A) = 1$

Correct

Mark 1.00 out of 1.00

The coordinate vector of 8+6x with respect to the basis [2,2x] is $(4,3)^T$

Select one:

- a. False
- b. True

The correct answer is: True

Question **9**

Correct

Mark 1.00 out of 1.00

The rank of
$$A=egin{pmatrix} 1 & 4 & 1 & 2 & 0 \ 2 & 6 & -1 & 2 & -1 \ 3 & 10 & 0 & 4 & 0 \end{pmatrix}$$
 is

Select one:

- \circ a. 4
- 0 b. 1
- \circ c. 2
- \odot d. 3
- ~

The correct answer is: 3

Question 10

Correct

Mark 1.00 out of 1.00

If A is an n imes n singular matrix, then

Select one:

- ${\mathbb Q}$ a. $N(A)=\{0\}$
- igcup b. $\mathrm{rank}(A)=n$
- lacktriangledown c. The columns of A are linearly dependent

~

igcup d. The rows of A are linearly independent

The correct answer is: The columns of ${\cal A}$ are linearly dependent

Question 11

Correct

Mark 1.00 out of 1.00

If A is an m imes n-matrix, and columns of A are linearly independent, then

Select one:

- $igcup a. \ m=n$

~

- \circ c. $m \leq n$
- \bigcirc d. m=n+1

The correct answer is: $n \leq m$

Correct

Mark 1.00 out of 1.00

Let E=[3-x,2+x] , F=[1,x] be ordered bases for P_2 . The transition matrix from E to F is

Select one:

- \circ a. $\begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$
- \circ c. $\begin{pmatrix} -1 & 1 \\ 2 & 3 \end{pmatrix}$
- \bigcirc d. $\begin{pmatrix} -1 & 1 \\ 3 & 2 \end{pmatrix}$

The correct answer is: $\begin{pmatrix} 3 & 2 \\ -1 & 1 \end{pmatrix}$

Question 13

Correct

Mark 1.00 out of 1.00

Let $S = \{f \in C[-1,1] : f ext{ is an odd function } \}$, then S is a subspace of C[-1,1] .

Select one:

- a. True
- O b. False

The correct answer is: True

Question 14

Correct

Mark 1.00 out of 1.00

The vectors $\{(1,-1,1)^T,(1,-1,2)^T,(1,-1,1)^T\}$ form a basis for \mathbb{R}^3 .

Select one:

- a. True
- b. False

 ✓

The correct answer is: False

Question **15**

Correct

Mark 1.00 out of 1.00

If A is a 3 imes 3-matrix, and Ax=0 has only the zero solution, then $\mathrm{rank}(A)=$

Select one:

- \circ a. 0
- b. 3
 - **V**
- \circ c. 2
- \circ d. 1

The correct answer is: 3

Correct

Mark 1.00 out of 1.00

The coordinate vector of $\begin{pmatrix} -3 \\ -2 \\ -5 \end{pmatrix}$ with respect to the ordered basis $\begin{bmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$ is

Select one:

- \bigcirc a. $\begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix}$
- \bigcirc b. $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$
- \bigcirc c. $\begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix}$

The correct answer is: $\begin{pmatrix} -1\\4\\-3 \end{pmatrix}$

Question 17

Correct

Mark 1.00 out of 1.00

Let $S=\{egin{pmatrix} a+b+2c\ a+2c\ a+b+2c \end{pmatrix}: a,b\in\mathbb{R}\}.$ Then dimension of S equals

Select one:

- lacksquare a. 2
- ~
- \circ b. 3
- o c. 0
- \circ d. 1

The correct answer is: 2

Question 18

Incorrect

Mark 0.00 out of 1.00

dimension of the subspace $S=\operatorname{Span}\left\{A_1=\begin{pmatrix}1&1\\2&0\end{pmatrix},A_2\begin{pmatrix}0&1\\-1&3\end{pmatrix},A_3=\begin{pmatrix}-3&-1\\-8&6\end{pmatrix}\right\}$ is

Select one:

- \circ a. 2
- 0 b. 0
- c. 3
 - ×
- \circ d. 1

The correct answer is: 2

Correct

Mark 1.00 out of 1.00

If A is an m imes n-matrix, and columns of A form a spanning set for \mathbb{R}^m , then

Select one:

- lacksquare a. $m \leq n$
 - **V**
- \circ b. $n \leq m$
- \circ c. m=n
- \bigcirc d. m=n+1

The correct answer is: $m \leq n$

Question 20

Correct

Mark 1.00 out of 1.00

Let $E=[2+x,1-x,x^2+1]$ be an ordered basis for $P_3.$ If $[p(x)]_E=egin{pmatrix}1\\-1\\3\end{pmatrix}$, then

Select one:

$$extstyle$$
 a. $p(x)=3x^2+2x+4$

~

$$\bigcirc$$
 b. $p(x)=x^2-x+3$

$$\bigcirc$$
 c. $p(x) = 3x^2 + 2x + 5$

$$\bigcirc$$
 d. $p(x)=3x^2+x-3$

The correct answer is: $p(x) = 3x^2 + 2x + 4$

Question 21

Correct

Mark 1.00 out of 1.00

If $\{v_1,v_2,v_3,v_4\}$ is a basis for a vector space V , then the set $\{v_1,v_2,v_3\}$ is

Select one:

- a. linearly dependent and a spanning set
- igcup b. linearly independent and a spanning set for V.
- igcup c. linearly dependent and not a spanning set for V.
- lacksquare d. linearly independent and not a spanning set for V.

~

The correct answer is: linearly independent and not a spanning set for V.

Question 22

Incorrect

Mark 0.00 out of 1.00

If A is 5 imes 3-matrix, rank(A)=3, then the system Ax=b has infinitely many solutions for every $b\in\mathbb{R}^3$.

Select one:

- a. True X
- b. False

The correct answer is: False

Correct

Mark 1.00 out of 1.00

Let V be a vector space, $\{v_1, v_2, \dots v_n\}$ a spanning set for V, and $v \in V$, then the vectors $\{v_1, v_2, \dots v_n, v\}$ form a spanning set for V.

Select one:

- a. False
- b. True

The correct answer is: True

Question **24**

Correct

Mark 1.00 out of 1.00

Every linearly independent set of vectors in \mathbb{R}^4 has exactly 4 vectors.

Select one:

- a. False
- b. True

The correct answer is: False

Question **25**

Correct

Mark 1.00 out of 1.00

If A is an n imes n-matrix and for each $b \in \mathbb{R}^n$ the system Ax = b has a unique solution, then

Select one:

- igcup a. $\mathrm{rank}(A)=n-1$
- lacksquare b. A is nonsingular

~

- \circ c. $\mathsf{nullity}(A) = 1$
- igcup d. A is singular

The correct answer is: A is nonsingular

Question **26**

Correct

Mark 1.00 out of 1.00

Let
$$S=\{inom{x}{y}\in\mathbb{R}^2: x=1-y\}$$
 , then S is a subspace of \mathbb{R}^2 .

Select one:

- a. True
- b. False

The correct answer is: False

Question 27

Correct

Mark 1.00 out of 1.00

If A is a 4 imes 3 matrix such that $N(A) = \{0\}$, and b can be written as a linear combination of the columns of A , then

Select one:

- lacksquare a. The system Ax=b has exactly two solutions
- lacksquare b. The system Ax=b has exactly one solution

~

- \circ c. The system Ax=b has infinitely many solutions
- igcup d. The system Ax=b is inconsistent

Correct

Mark 1.00 out of 1.00

Let A be a 4 imes 3-matrix with $\operatorname{nullity}(A) = 0$. Then $\operatorname{rank}(A) = 1$

Select one:

- a. True
- b. False

The correct answer is: False

Question 29

Correct

Mark 1.00 out of 1.00

If the columns of $A_{n imes n}$ are linearly independent and $b\in\mathbb{R}^n$, then the system Ax=b is inconsistent.

Select one:

- a. False
- b. True

The correct answer is: False

Question 30

Correct

Mark 1.00 out of 1.00

Let V be a vector space of dimension 4 and $W=\{v_1,v_2,v_3,v_4,v_5\}$ a set of nonzero vectors of V , then

Select one:

- igcup a. W is a basis
- ullet b. W is linearly independent
- \circ c. W is a spanning set
- lacksquare d. W is linearly dependent
 - **~**

The correct answer is: W is linearly dependent

Question 31

Correct

Mark 1.00 out of 1.00

If A is a 3 imes 5-matrix, rows of A are linearly independent, then

Select one:

- a. $\operatorname{rank}(A) = \operatorname{nullity}(A) + 1$
 - **~**
- \circ b. $\operatorname{rank}(A) = \operatorname{nullity}(A) + 3$
- \circ c. rank(A) = nullity(A)
- \bigcirc d. rank $(A)=\mathsf{nullity}(A)+2$

The correct answer is: $\operatorname{rank}(A) = \operatorname{nullity}(A) + 1$

Question **32**

Correct

Mark 1.00 out of 1.00

If $v_1,v_2,\cdots,v_n\in V$, $\dim(V)=n$ and v_1,v_2,\cdots,v_n are linearly independent, then Span $(v_1,v_2,\cdots,v_n)=V$, .

Select one:

- a. True
- b. False

The correct answer is: True

/10/2021	Second Exam: Attempt review	
	Jump to	Announcements ▶

<u>Data retention summary</u>