Started on Sunday, 10 January 2021, 9:47 AM
 State Finished
 Completed on Sunday, 10 January 2021, 10:33 AM
 Time taken 45 mins 22 secs
 Grade 30.00 out of 32.00 (94\%)

Question 1
Correct
Mark 1.00 out of 1.00

The vectors $\left\{x^{2}+2 x+1, x-1, x^{2}+x+1\right\}$ form a basis for P_{3}.
Select one:
a. False
© b. True \downarrow

The correct answer is: True

Question 2
Correct
Mark 1.00 out of 1.00

Let $E=\left[2+x, 1-x, x^{2}+1\right]$ be an ordered basis for P_{3}. If $p(x)=2 x^{2}-2 x+1$, then the coordinate vector of $p(x)$ with respect to E is

Select one:
a. $\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)$
b. $\left(\begin{array}{c}3 \\ 2 \\ -3\end{array}\right)$
c. $\left(\begin{array}{c}2 \\ -3 \\ 1\end{array}\right)$
d. $\left(\begin{array}{c}-2 \\ -3 \\ 2\end{array}\right)$

The correct answer is: $\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)$

Question 3

Correct
Mark 1.00 out
of 1.00

If A is a nonzero 4×2-matrix and $A x=0$ has infinitely many solutions, then $\operatorname{rank}(A)=$
Select one:
a. 4
-b. 3
(-) c. 1
\checkmark
d. 2

Question 4
Correct
Mark 1.00 out of 1.00

If $A=\left(\begin{array}{cccc}1 & -2 & 1 & 0 \\ -1 & 2 & 3 & 0 \\ 2 & -1 & 0 & 0\end{array}\right)$, then $\operatorname{rank}(A)=3$.
Select one:

- a. True \checkmark
b. False

The correct answer is: True

Question 5
Correct
Mark 1.00 out
of 1.00

Every spanning set for \mathbb{R}^{3} contains at least 3 vectors.
Select one:
a. False
© b. True \vee

The correct answer is: True

Question 6

Correct
Mark 1.00 out of 1.00 f 1.00

The transition matrix from the standard basis $S=\left[e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}\right]$ to the ordered basis $U=\left[u_{1}=\binom{1}{3}, u_{2}=\binom{2}{7}\right]$ is

Select one:
a. $T=\left(\begin{array}{ll}1 & 2 \\ 3 & 7\end{array}\right)$
b. $T=\left(\begin{array}{cc}1 & -2 \\ -3 & 7\end{array}\right)$
c. $T=\left(\begin{array}{cc}-7 & 2 \\ 3 & -1\end{array}\right)$
d. $T=\left(\begin{array}{cc}7 & -2 \\ -3 & 1\end{array}\right)$

The correct answer is: $T=\left(\begin{array}{cc}7 & -2 \\ -3 & 1\end{array}\right)$

Question 7

Correct
Mark 1.00 out
of 1.00

If A is a 3×4-matrix, rows of A are linearly independent, then
Select one:
a. $\operatorname{rank}(A)=3-\operatorname{nullity}(A)$
(b. $\operatorname{nullity}(A)=1$
c. $\operatorname{nullity}(A)=3$d. $\operatorname{rank}(A)=\operatorname{nullity}(A)$

The correct answer is: $\operatorname{nullity}(A)=1$

Question 8

Correct

Mark 1.00 out of 1.00

The coordinate vector of $8+6 x$ with respect to the basis $[2,2 x]$ is $(4,3)^{T}$
Select one:a. Falseb. True

The correct answer is: True

Question 9

Correct

Mark 1.00 out
of 1.00
The rank of $A=\left(\begin{array}{ccccc}1 & 4 & 1 & 2 & 0 \\ 2 & 6 & -1 & 2 & -1 \\ 3 & 10 & 0 & 4 & 0\end{array}\right)$ is
Select one:
a. 4
b. 1
-c. 2
(d. 3

The correct answer is: 3

Question 10
Correct
Mark 1.00 out of 1.00

If A is an $n \times n$ singular matrix, then
Select one:
a. $N(A)=\{0\}$
b. $\operatorname{rank}(A)=n$
(c. The columns of A are linearly dependent
d. The rows of A are linearly independent

The correct answer is: The columns of A are linearly dependent

Question 11

Correct
Mark 1.00 out of 1.00

If A is an $m \times n$-matrix, and columns of A are linearly independent, then Select one:
a. a. $m=n$b. $n \leq m$
c. $m \leq n$d. $m=n+1$

Question 12
Correct
Mark 1.00 out of 1.00

Let $E=[3-x, 2+x], F=[1, x]$ be ordered bases for P_{2}. The transition matrix from E to F is
Select one:
a. $\left(\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right)$

- b. $\left(\begin{array}{cc}3 & 2 \\ -1 & 1\end{array}\right)$
c. $\left(\begin{array}{cc}-1 & 1 \\ 2 & 3\end{array}\right)$
d. $\left(\begin{array}{cc}-1 & 1 \\ 3 & 2\end{array}\right)$

The correct answer is: $\left(\begin{array}{cc}3 & 2 \\ -1 & 1\end{array}\right)$

Question 13
Correct
Mark 1.00 out of 1.00

Question 14
Correct
Mark 1.00 out
of 1.00
Let $S=\{f \in C[-1,1]: f$ is an odd function $\}$, then S is a subspace of $C[-1,1]$.
Select one:
© a. True \checkmark
b. False

The correct answer is: True

The vectors $\left\{(1,-1,1)^{T},(1,-1,2)^{T},(1,-1,1)^{T}\right\}$ form a basis for \mathbb{R}^{3}.
Select one:
a. True
© b. False

The correct answer is: False

Question 15
If A is a 3×3-matrix, and $A x=0$ has only the zero solution, then $\operatorname{rank}(A)=$
Correct
Mark 1.00 out of 1.00

Select one:
a. 0
(-b. 3
\checkmark
c. 2
-d. 1

The correct answer is: 3

Question 16
Correct
Mark 1.00 out of 1.00

The coordinate vector of $\left(\begin{array}{l}-3 \\ -2 \\ -5\end{array}\right)$ with respect to the ordered basis $\left[\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)\right]$ is
Select one:
a. $\left(\begin{array}{c}1 \\ -4 \\ 3\end{array}\right)$
b. $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$
c. $\left(\begin{array}{l}3 \\ 2 \\ 5\end{array}\right)$
(c). $\left(\begin{array}{c}-1 \\ 4 \\ -3\end{array}\right)$

The correct answer is: $\left(\begin{array}{c}-1 \\ 4 \\ -3\end{array}\right)$

Question 17
Correct
Mark 1.00 out
of 1.00
Let $S=\left\{\left(\begin{array}{c}a+b+2 c \\ a+2 c \\ a+b+2 c\end{array}\right): a, b \in \mathbb{R}\right\}$. Then dimension of S equals
Select one:
(a. 2
-b. 3
c. 0
od. 1

The correct answer is: 2

Question 18
Incorrect
Mark 0.00 out of 1.00
dimension of the subspace $S=\operatorname{Span}\left\{A_{1}=\left(\begin{array}{cc}1 & 1 \\ 2 & 0\end{array}\right), A_{2}\left(\begin{array}{cc}0 & 1 \\ -1 & 3\end{array}\right), A_{3}=\left(\begin{array}{cc}-3 & -1 \\ -8 & 6\end{array}\right)\right\}$ is
Select one:

- a. 2
b. 0
- c. 3
\times
-d. 1

The correct answer is: 2

Question 19
Correct
Mark 1.00 out
of 1.00

If A is an $m \times n$-matrix, and columns of A form a spanning set for \mathbb{R}^{m}, then
Select one:
(a. $m \leq n$
b. $n \leq m$
c. $m=n$
d. $m=n+1$

The correct answer is: $m \leq n$

Question 20
Correct
Mark 1.00 out of 1.00

Let $E=\left[2+x, 1-x, x^{2}+1\right]$ be an ordered basis for P_{3}. If $[p(x)]_{E}=\left(\begin{array}{c}1 \\ -1 \\ 3\end{array}\right)$, then
Select one:

- a. $p(x)=3 x^{2}+2 x+4$
b. $p(x)=x^{2}-x+3$
c. $p(x)=3 x^{2}+2 x+5$
d. $p(x)=3 x^{2}+x-3$

The correct answer is: $p(x)=3 x^{2}+2 x+4$

Question 21

If $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis for a vector space V, then the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is
Correct
Mark 1.00 out of 1.00

Question 23

Correct

Mark 1.00 out of 1.00

Let V be a vector space, $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ a spanning set for V, and $v \in V$, then the vectors $\left\{v_{1}, v_{2}, \ldots v_{n}, v\right\}$ form a spanning set for V.

Select one:
a. False
© b. True

The correct answer is: True

Question 24

Correct
Mark 1.00 out of 1.00

Every linearly independent set of vectors in \mathbb{R}^{4} has exactly 4 vectors.
Select one:
© a. False
-b. True

The correct answer is: False

Question 25
If A is an $n \times n$-matrix and for each $b \in \mathbb{R}^{n}$ the system $A x=b$ has a unique solution, then
Correct
Mark 1.00 out of 1.00

Select one:
$\operatorname{arank}(A)=n-1$
© b. A is nonsingular
c. $\operatorname{nullity}(A)=1$
d. A is singular

The correct answer is: A is nonsingular

Question 26
Correct
Mark 1.00 out of 1.00

Let $S=\left\{\binom{x}{y} \in \mathbb{R}^{2}: x=1-y\right\}$, then S is a subspace of \mathbb{R}^{2}.
Select one:a. Trueb. False

The correct answer is: False

Question 27
Correct
Mark 1.00 out of 1.00

If A is a 4×3 matrix such that $N(A)=\{0\}$, and b can be written as a linear combination of the columns of A, then

Select one:
a. The system $A x=b$ has exactly two solutions
(b. The system $A x=b$ has exactly one solution
c. The system $A x=b$ has infinitely many solutions
d. The system $A x=b$ is inconsistent

Question 28
Correct
Mark 1.00 out
of 1.00

Correct
Mark 1.00 out
of 1.00

Question 29

Let A be a 4×3-matrix with nullity $(A)=0$. Then $\operatorname{rank}(A)=1$
Select one:

- a. Trueb. False

The correct answer is: False

If the columns of $A_{n \times n}$ are linearly independent and $b \in \mathbb{R}^{n}$, then the system $A x=b$ is inconsistent.
Select one:
-
a. Falseb. True

The correct answer is: False

Question 30
Correct
Mark 1.00 out of 1.00

Let V be a vector space of dimension 4 and $W=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ a set of nonzero vectors of V, then Select one:
a. W is a basis
b. W is linearly independent
c. W is a spanning set
(o) d. W is linearly dependent

The correct answer is: W is linearly dependent

Question 31
Correct
Mark 1.00 out of 1.00

If A is a 3×5-matrix, rows of A are linearly independent, then

Select one:
(o. arank $(A)=\operatorname{nullity}(A)+1$
b. $\operatorname{rank}(A)=\operatorname{nullity}(A)+3$
c. $\operatorname{rank}(A)=\operatorname{nullity}(A)$
d. $\operatorname{rank}(A)=\operatorname{nullity}(A)+2$

The correct answer is: $\operatorname{rank}(A)=\operatorname{nullity}(A)+1$

Question 32

Correct
Mark 1.00 out of 1.00

If $v_{1}, v_{2}, \cdots, v_{n} \in V, \operatorname{dim}(V)=n$ and $v_{1}, v_{2}, \cdots, v_{n}$ are linearly independent, then Span $\left(v_{1}, v_{2}, \cdots, v_{n}\right)=V$.

Select one:

- a. True \downarrow
b. False

